Numerical Investigation of Vertical and Horizontal Baffle Effects on Liquid Sloshing in a Rectangular Tank Using an Improved Incompressible Smoothed Particle Hydrodynamics Method
نویسنده
چکیده مقاله:
Liquid sloshing is a common phenomenon in the transporting of liquid tanks. Liquid waves lead to fluctuating forces on the tank wall. If these fluctuations are not predicted or controlled, they can lead to large forces and momentum. Baffles can control liquid sloshing fluctuations. One numerical method, widely used to model the liquid sloshing phenomena is Smoothed Particle Hydrodynamics (SPH). Because of its Lagrangian nature, SPH is suitable for simulating free surface flow. In the present study, a relatively accurate Incompressible SPH (ISPH) method improved by kernel gradient correction tensors, particle shifting algorithms, turbulence viscosity calculations, and free surface particle detectors is applied for the free surface flow modeling. In comparison to the other SPH Simulations and experimental data, these results show that the present algorithm is effective for simulating free surface problems. The present algorithm has been applied to simulate liquid sloshing phenomena, while the aim of this study is the investigation of vertical and horizontal baffle effects on the control and damping of liquid sloshing. Results show that for vertical baffles, baffle size has a major role in sloshing fluctuation damping. For horizontal baffles, also including size, the baffle base position has a significant role in liquid sloshing fluctuation damping. When horizontal baffle is near the free surface, sloshing fluctuation-damping increases.
منابع مشابه
Investigation on the sloshing effect in a 2D tank under harmonic excitation using Smoothed Particle Hydrodynamics (SPH) and Finite Volume method (FVM)
Abstract Sloshing describes liquids motion in the semi-filled tanks, and exerts dynamic loading on its walls. This effect is of great importance in a number of dynamic systems e.g. aerospace vehicles, road tankers, liquefied natural gas carriers, elevated water towers and petroleum cylindrical tanks. Pressures insert impacts which are important for structural strength evaluation and its co...
متن کاملIncompressible smoothed particle hydrodynamics
We present a smoothed particle hydrodynamic model for incompressible fluids. As opposed to solving a pressure Poisson equation in order to get a divergence-free velocity field, here incompressibility is achieved by requiring as a kinematic constraint that the volume of the fluid particles is constant. We use Lagrangian multipliers to enforce this restriction. These Lagrange multipliers play the...
متن کاملIncompressible smoothed particle hydrodynamics simulations on free surface flows
The water wave generation by wave paddle and a freely falling rigid body are examined by using an Incompressible Smoothed Particle Hydrodynamics (ISPH). In the current ISPH method, the pressure was evaluated by solving pressure Poisson equation using a semi-implicit algorithm based on the projection scheme and the source term of pressure Poisson equation contains both of divergence free ve...
متن کاملSmoothed particle hydrodynamics-based numerical investigation on sessile, oscillating droplets.
Forced oscillations in sessile droplets can be exploited in electrowetting mixing of fluid fractions. The necessary complex flows and large shape deformations require a numerical investigation of fluid dynamics in the transient regime. We provide a means to characterize oscillations qualitatively and quantitatively with the goal to examine and to classify flow patterns occurring inside. A super...
متن کاملincompressible smoothed particle hydrodynamics simulations on free surface flows
the water wave generation by wave paddle and a freely falling rigid body are examined by using an incompressible smoothed particle hydrodynamics (isph). in the current isph method, the pressure was evaluated by solving pressure poisson equation using a semi-implicit algorithm based on the projection scheme and the source term of pressure poisson equation contains both of divergence free ve...
متن کاملInvestigating the Third Order Solitary Wave Generation Accuracy using Incompressible Smoothed Particle Hydrodynamics
This paper examines the generation and propagation of a Third order solitary water wave along the channel. First the Incompressible Smoothed Particle Hydrodynamics (ISPH) numerical method is described and the boundary condition handling method is presented. The numerical model is then used to simulate solitary wave propagation along the fixed depth channel. The numerical results are compared wi...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 8 شماره 2
صفحات 175- 186
تاریخ انتشار 2019-02-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023